151 First Side

Technical Assignment 2 November 16th, 2007

William J. Buchko

AE 481w – Senior Thesis The Pennsylvania State University

Thesis Advisor: Kevin Parfitt

Table of Contents

Executive Summary
Structural System Overview
Foundation4
Slab on Grade4
Structural Frame4
Floor and Roof System4
Lateral System6
Design Loads9
Analysis Overview10
Hambro System (current)11
Steel Composite System13
Two-Way Flat Plate System15
Waffle Slab System
Steel Supported Hollow Core Plank System19
Comparison Chart21
Final Overview22
Appendix23

Executive Summary

Report Summary:

The purpose of the second technical report is to determine the feasibility of four alternative systems and compare and contrast them with the current system. Of these four systems at least one must be comprised primarily of a different material than the current system. Also, no more than two variations of the same system can be analyzed. The four systems I chose to analyze are a steel composite system, a two-way flat plate system, a waffle slab system, and a hollow core precast concrete system in addition to the current Hambro floor system.

Conclusions:

My research shows that the alternative with the greatest chances of success would be conventional composite steel framing. Some of the main advantages of such a system are the relatively cheap cost, the easy and quick construction, the common availability of supplies and skilled labor, and the light weight. There will be slightly more steel that will need to be placed than the current system, but this should be no problem for any contractor.

Two of the other systems, the two-way flat plate and the hollow core precast planks, were also found to be possibilities, though their inherent disadvantages led me to not give them high recommendations.

The only remaining system, the waffle slab, was found to not be a suitable alternative. Though it was possible to use this system, it provided no benefits over the current system.

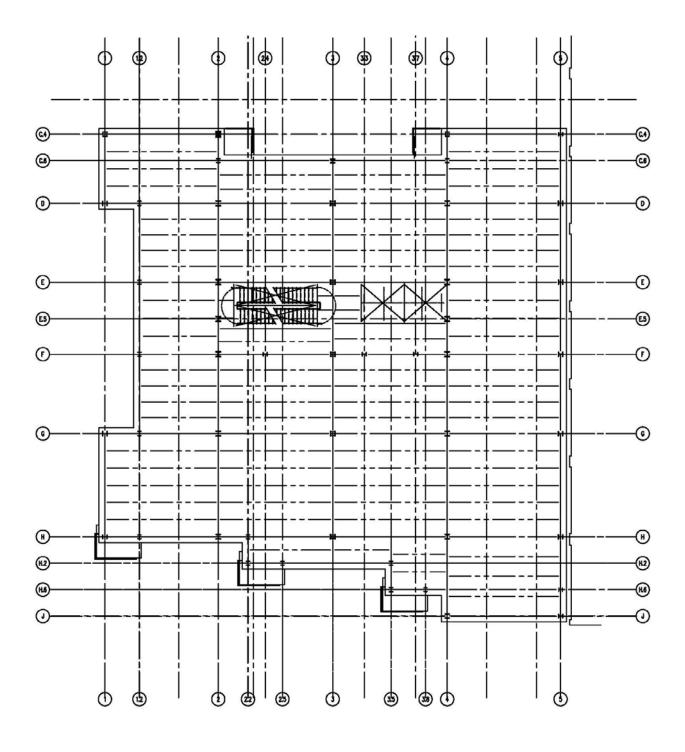
Structural System

Foundation:

The foundation was designed based on soil reports prepared by Engineering Mechanics, Inc. and Ackenheil Engineering, Inc., dated April, 2002 and July 1, 2005 respectively. Due to the close proximity of the Monongahela River pressure injected auger cast piles, 18" in diameter were used. Pile tips were placed at an elevation of 674'-0", which gives an average length of 52'. Each pile has a capacity of 120 tons. Pile caps are made of concrete with a 28 day strength of $f_c = 3000psi$.

Slab on Grade:

The sub-basement and basement floors consist of slab on grade at elevations 725'-0" and 728'-0" respectively. The slabs are 5" of concrete with a 28 day strength of $f'_c =$ 4000psi and are reinforced with 6x6 w2.1 x w2.1 welded wire fabric. Concrete was placed above 4" of AASHTO 57 well graded compacted granular stone.

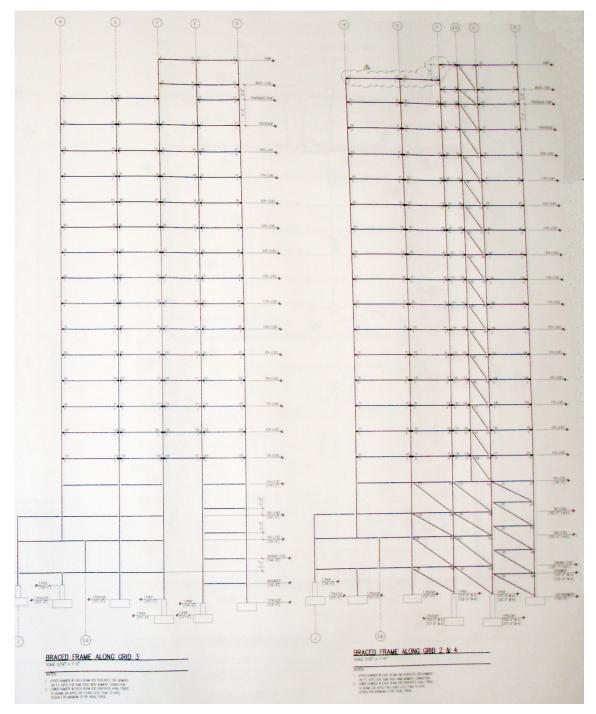

Structural Frame:

The structural framing is made of steel I shapes. The beams range from W10 to W16 with the most common size being a W14x61. The columns are W12 shapes with weights ranging from 40 to 336 pounds per linear foot. Common column splices occur at every second floor.

Floor and Roof System:

The parking levels on the first three stories as well as the terrace level have poured concrete floors. All parking floors are 4" of light weight concrete on a 2" 20ga. galvanized composite metal deck with the exception of some highly loaded areas of the ground floor in which there is a 6" slab. The 4" sections on the parking levels are reinforced with #4 rebar spaced at 12" in both the bottom and the top of the slab with the top bars continuing for ¼ of the span length past the supports. The 6" sections contain 6x6-W2.9xW2.9 welded wire fabric. The terrace level has 6x6-W1.4xW1.4 welded wire fabric for its reinforcement.


The residential and mechanical levels, as well as the roof, contain an MD200 composite floor joist system provided by Hambro. The concrete slab is $3\frac{1}{4}$ " thick and is made with concrete with a 28 day strength of f'_c=4000psi. Reinforcing within the concrete is a 6x6-W2.9xW2.9 welded wire mesh. The concrete is supported by 22ga. $1\frac{1}{2}$ " galvanized steel deck. The joist depth is 16" unless otherwise noted. The top chord is an "S' shape piece of cold-rolled, ASTM A 1008, Grade 50, 13ga. steel which works as both a compressive member as well as a shear connector. The bottom chord is made of two steel angles. Both chords have a minimum F_y =50,000psi. The web is formed from 7/16" hot-rolled steel bars with an F_y =44,000psi. The roof is also topped with a waterproof membrane.



6

Lateral System:

The lateral system is composed of both braced frames as well as special moment frames. On column grid lines 2, 3, 4, E, and F there is some braced frames in the parking levels. Above level 5 every frame is braced, or if bracing is not architecturally feasible a special moment frame is used. Diagonal braces are made from W12 shapes.

Design Loads

General Loads:

Floor Live Loads		
Load Area	Design Load	Minimum Load (ASCE 7-05)
Common Areas	100 psf	100 psf
Corridors	100 psf	100 psf
Parking	40 psf	40 psf
Residential	40 psf	40 psf
Mechanical	150 psf	n/a
Deedlaada		

Dead Loads Item

Design Value

Where Applicable

20 psf 5 psf 5 psf Varies

Analysis Overview

Systems Analyzed:

Hambro Composite Joist System (Current) Steel Composite System Two Way Flat Plate System Waffle Slab System Steel Supported Hollow Core Plank System

Design Criteria:

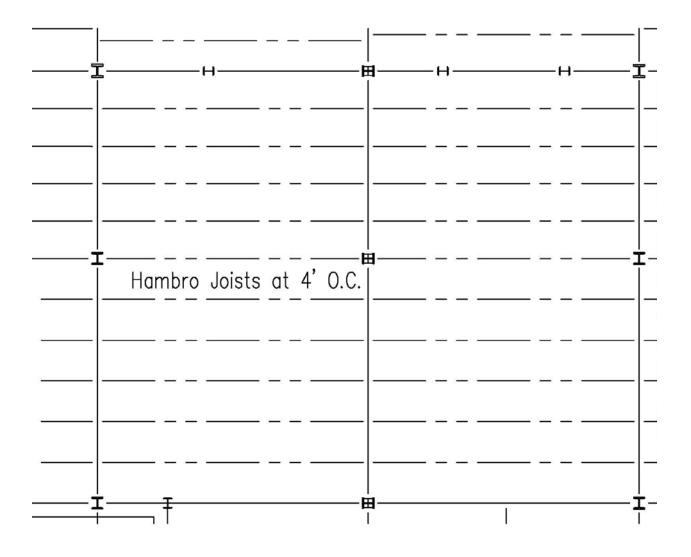
Live Load: 40psf + 20psf partition allowance (except common areas) Superimposed Dead Load: 30psf Self Weight: Varies Deflection: Steel: Total = L / 240 Live = L / 360 Concrete: Total = L / 420 Fire Rating: 2 Hours

Area of Design:

The area being analyzed is the residential levels as these contain the typical framing system of the building and provide the most opportunity for change. Depending on the system being analyzed, either a single worst case bay or a worst case frame will be used. I will then use these values to determine general properties for the entire system. These values will be conservative due to the methods used to obtain them, but this will allow for special details and situations which will not be discussed in this report. Note that only gravity loads will be considered.

Hambro Composite Joist System (Current)

Overview:


The current floor system is a MD2000 Hambro system which contains proprietary composite joists. It is comprised of a $3\frac{1}{4}$ " slab with 16" composite joists resting on W14x61. These values are higher than what the Hambro design guide recommends. After discussion with a Hambro representative, I have found that the concrete slab was increased in depth by $\frac{1}{2}$ " for both vibration and acoustical reasons. The deeper joists were used due to slightly higher loads than what the design guide is written for, the need for larger mechanical openings, as well as the ability to hang the ceiling from the joists without interference from the beams. More information can be found in the Appendix on page 23.

Advantages:

The Hambro system has many advantages. Since the lateral conditions are controlled by wind loading, the lighter weight of the joist is desirable. The open webs of the joist also allow for easy penetrations of mechanical, fire protection, and electrical equipment. The composite action of the joist also allows for a smaller system depth. This system is also relatively quick and easy to install.

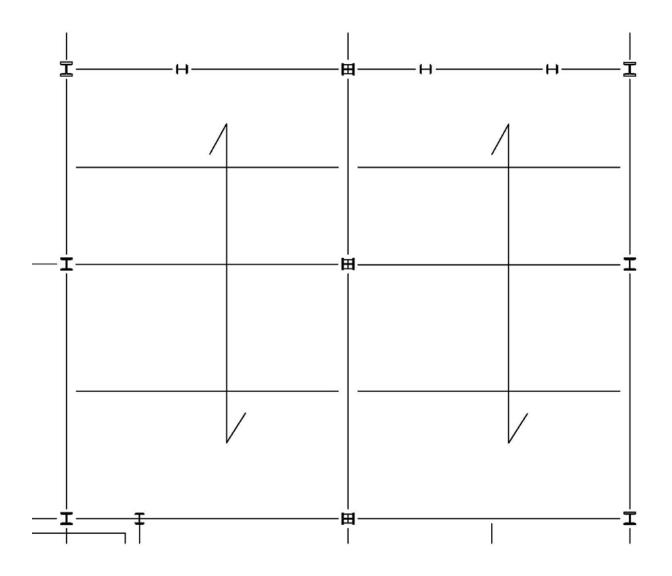
Disadvantages:

Joist systems do have some inherent disadvantages. Because of the relative flexibility of the joists, the system can have problems with deflection and sound transmission. This has been taken into consideration in 151 First Side and the slab was made thicker to compensate. Also, more work is needed to obtain the required fire rating of 2 hours. Typical methods include spray-on fire protection or a fire rated suspended or gypboard ceiling, both of which can be costly and/or time consuming.

Typical bays H2-F4 for the Hambro System

Steel Composite System

Overview:


I chose to analyze a more conventional steel framing system consisting of composite beams and composite steel deck. Using the United Steel Deck design manual I have determined that a USD 2" Lok-Floor with 2½" of concrete would be the best choice in decking without requiring shoring. Using a RAM computer model, I have found that the majority of the beams would be W14x22 shapes with an average of 10 studs per beam. More information can be found in the Appendix on page 25.

Advantages:

Conventional steel systems are used often because of their many advantages. For 151 First Side the column grid would not need to be adjusted as the beams and decks could be adapted to fit the current layout. The floor would not need any extra fire protection and the beams could be quickly protected by a simple spraying process. Construction is also relatively quick with conventional steel framing, especially when the floor does not require any shoring. In addition, most of the materials that are needed will be readily available for quick delivery.

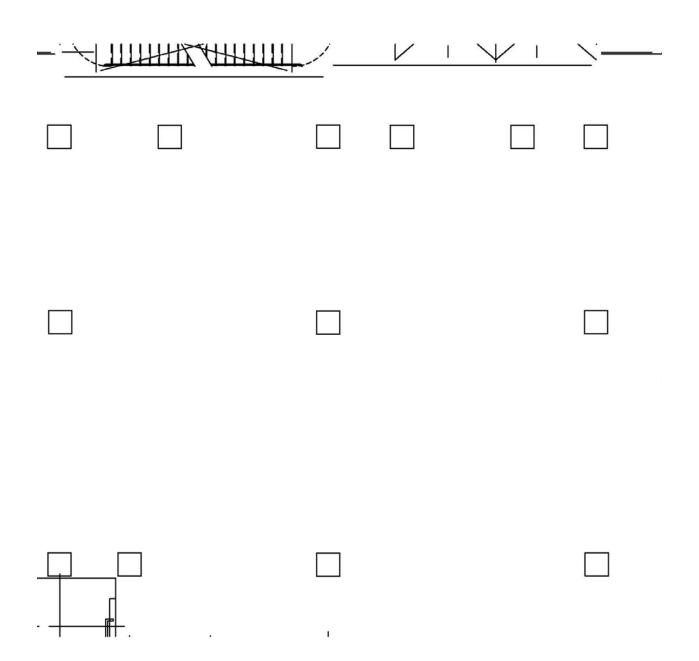
Disadvantages:

The obvious disadvantage of conventional steel framing is the extra labor involved in placing more beams as well as creating composite action. Another disadvantage is the closed webs. Penetrations may have to be made for mechanical equipment as well as sprinkler systems.

Typical bays H2-F4 for the Steel Composite System

Two Way Flat Plate System

Overview:


The first concrete system I chose to compare is a two way flat plate system. I have decided to use the values from the Concrete Reinforcing Steel Institute (CRSI) Handbook as a preliminary guideline to determine if such a system would be feasible and useful in 151 First Side. If this system is found to be acceptable, further calculations will be done. From the CRSI Handbook, I have determined that the floor will most likely be a 9" slab with 27" square columns needed. If this system is chosen, the parking levels will need to be changed as well. More information can be found in the Appendix on page 26.

Advantages:

With only a 9" depth, this system is quite shallow. Also, due to its nature it does not need any additional fire protection. There is also no need for intermediate beams with this system.

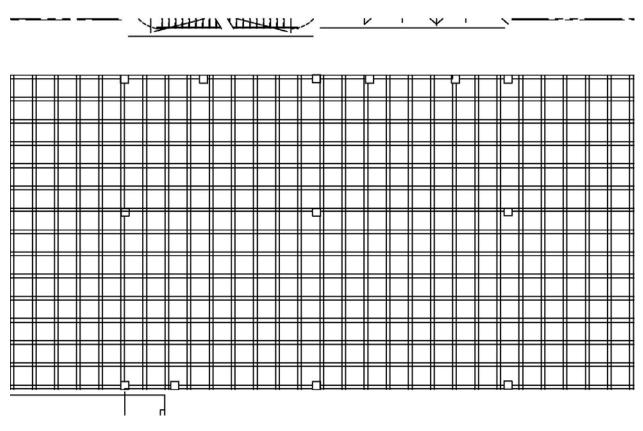
Disadvantages:

Concrete is a heavy material, and the added weight may have an effect on the foundation due to the proximity of the rivers. Also, since there is no webs or penetrations, all mechanical, electrical, and fire protection elements must be hung below the slab. This will cause the overall system to be somewhat deeper.

Typical bays H2-F4 for the Two-Way Flat Plate System

Waffle Slab System

Overview:


The next system I decided to look at was a waffle slab system made of 30" square voids and 6" ribs. I have once again used the CRSI Handbook, and have found that a conservative solution would be 8" deep ribs with $4\frac{1}{2}$ " of concrete slab for a total slab depth of $12\frac{1}{2}$ ". The columns would need to be 13" square minimum. If this system is chosen, the parking levels will need to be changed as well. More information can be found in the Appendix on page 28.

Advantages:

Using a waffle slab system can have its advantages. It is a relatively shallow system with narrow columns. It can be quite stiff, and as a result it handles deflections, vibrations, and sound transmission relatively well. Once again, when constructed properly, this system may not need any extra fire protection.

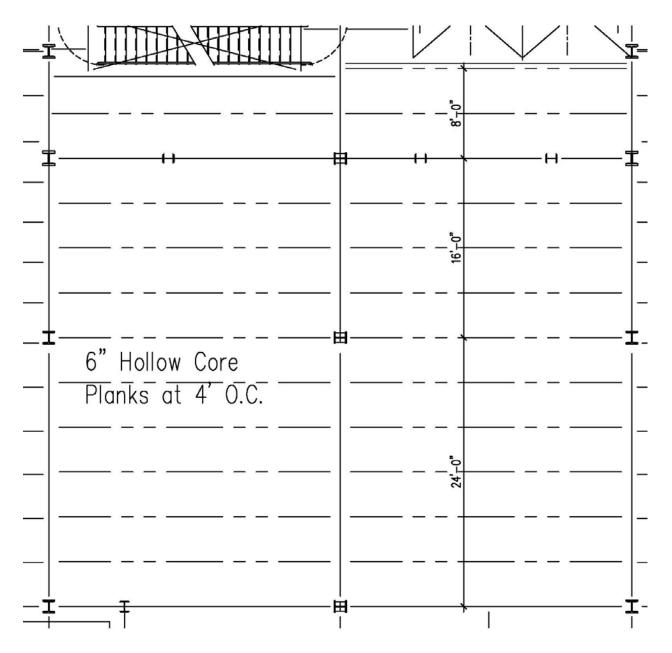
Disadvantages:

Some of the disadvantages include the more complicated formwork required to create the voids and the extra labor and time needed because of this. Also, like the two way flat plate, the mechanical and fire protection must be placed below the bottom of the system, causing the overall depth to increase. Although the voids help reduce the amount of material, this is still a heavy system.

Typical bays H2-F4 for the Waffle Slab System

Steel Supported Hollow Core Concrete Plank System

Overview:


To try and combine the best of both steel and concrete systems, I have decided to look into a hollow core concrete plank system supported by steel beams. The column grid would have to go through a few simple changes to accommodate the 4' wide planks. Most changes are just a matter of inches and do not affect the overall design, though a few areas will need to have cut planks in accordance with the manufacturer. A 6" hollow core concrete plank containing (7) $\frac{1}{2}$ " strands and a 2" topping would be sufficient to hold the required loads. According to a simple RAM model the main load carrying beams would need to be W14x22 shapes supporting the necessary 6" steel angles. More information can be found in the Appendix on page 29.

Advantages:

The depth of this system is 14" as required by the W-Shapes which includes 4" of space for mechanical and fire protection systems between the beams. Hollow core planks are also quick to install and relatively light. Due to the nature of the hollow core planks, they perform very well with sound transmission.

Disadvantages:

Even with a modified column layout there will still be sections that need customized planks. This can be costly and problematic.

Typical bays H2-F4 for the Hollow Core Precast Concrete System

	Hanshing Constant	Charl	Two-		
	Hambro System (current)	Steel Composite	Way Flat Plate	Waffle Slab	Hollow Core Plank
Weight (psf)	62	71	112.5	108.33	83
Cost (\$/sf)	\$18.95	\$16.79	\$14.20	\$19.10	\$17.20
Depth (in.)	19.25	18.25	9	12.5	14
Grid	-	Same	Same	Same	Adjusted to fit.
	Spray On or	Spray On or			
Extra Fire	Approved	Approved			Spray On for
Protection	Ceiling	Ceiling	None	None	beams
Foundation	-	Possibly larger	Larger	Larger	Possibly Larger
			Easy but	Difficult	
Construction	Easy & Quick	Easy & Quick	Slow	& Slow	Easy & Quick
			Shear	Shear	
Lateral System	-	Same	Wall	Wall	Same
Main					
Advantage	Weight	Constructability	Depth	Depth	Constructability
Main			Column		Non-Multiples
Disadvantage	Depth	Depth	Size	Cost	of 4'
Possible					
Alternative	-	YES	MAYBE	NO	MAYBE
Кеу:	Good	Acceptable	Bad		

Final Overview

From the four alternatives that I have checked, the most feasible seems to be the conventional steel composite floor system. Although this system is relatively deep, it does leave room for mechanical and fire protection between the beams. Also, its relatively light weight is an asset due to the proximity of the river and subsequent foundation issues. This system is also fairly cheap and easy to construct. Since it is so commonly used the materials and skilled labor will be readily available.

Using a two-way flat plate system is also a possibility. It has the main advantage of being the cheapest and thinnest of the systems I have checked. It also does not require extra fire protection which can save both costs and labor. There are a couple of reasons, though, why this system does not receive a "YES." Due to the solid concrete it is the heaviest of the systems. This weight will require a redesign of the foundation which will be costly due to sub-grade conditions. Also, due to the weight of the floor the columns will have to increase. This adds inconvenience to the open floor plan within the condos. Also, since braced frames and moment connections are not a possibility, shear walls would need to be designed. If there is not enough shear capacity in the elevator and stair core, additional shear walls will need to be placed within the condos themselves, which interferes with the open floor plan and also causes more costly structural detailing at the parking levels, where the shear walls would not be able to continue.

The hollow core plank system supported by steel beams is another possibility. While it is generally easy to construct this type of system, there are more complicated details when there are spaces that are not at 4' widths. This becomes more of a problem on upper levels where there are multiple setbacks which change the bay widths by various amounts. Because of this issue, and the lack of any added benefit, this system is feasible, but not highly recommended.

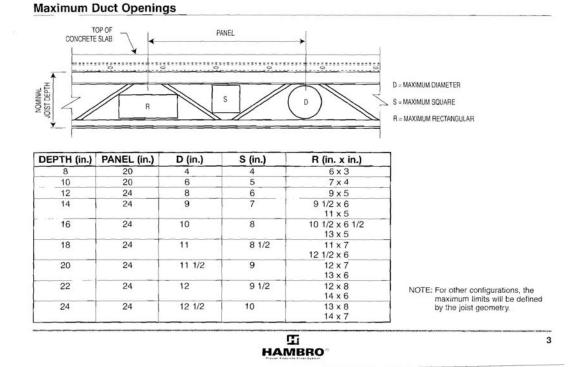
The final alternative I have checked is the waffle slab system. This system suffers many of the same disadvantages as the two-way flat plate system with the added disadvantages of a high cost, extra labor, and longer construction time. Since the disadvantages greatly outweigh the few advantages, I have decided that this system is not a feasible alternative to the current floor system.

Appendix

HAMBRO SPAN TABLES

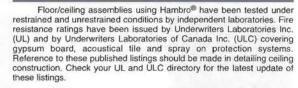
的人,如此是这些时间,在这些时间,在这些时间的问题,自己,这些时间,也是我的问题。 第二章

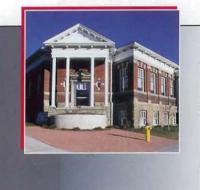
TABLE 8: MD2000[®] Clear Span Table


		Resid	dential		Comm	nercial	
Slab Thickness	2 3/4"	3"	3 1/4"	3 1/2"	2 3/4"	3 1/4"	
Joist	LL = 40 psf	LL = 50 psf	LL = 50 psf				
Depth*	DL = 68 psf	DL = 71 psf	DL = 74 psf	DL = 77 psf	DL = 68 psf	DL = 74 psf]
8"	18' - 0"	18' - 0"	18' - 0"	18' - 0"	18' - 0"	18' - 0"	
10"	22' - 6"	22' - 6"	22'- 6"	22' - 6"	22' - 6"	22' - 6"	1
12"	27' - 0"	27' - 0"	27' - 0"	27' - 0"	27' - 0"	27' - 0"	
14"	31' - 6"	31' - 6"	31' - 6"	30' - 10"	31' - 6"	31' - 6"	Top of Slab
16"	35' - 11"	35' - 0"	34' - 1"	33' - 2"	35' - 11"	34' - 1"	10
18"	38' - 7"	37' - 5"	36' - 5"	35' - 7"	38' - 7"	36' - 5"	Slab
20"	41' - 0"	39' - 11"	38' - 10"	37' - 9"	41' - 0"	38' - 9"	
22"	43' - 0"	42' - 3"	41' - 0"	39' - 11"	43' - 0"	41' - 0"	WD25000 Joist 11/2" Steel (22 G
24"	43' - 0"	43' - 0"	43' - 0"	42' - 1"	43' - 0"	43' - 0"	7 utd / 11/2"

NOTES:

- Minimum slab thickness = 2 3/4"
- Minimum top chord cover = 1 1/4"


• $f'_c = 3,000 \text{ psi}, F_y = 50 \text{ ksi}$ • Joist spacing: 4'-1 1/4"


- · Table reflects uniform loads only.
- Metal deck standard: / 1/2", 22 ga
- (Galvanized)
- Nominal slab thickness = slab thickness + 1/2" (Concrete in Deck)
- · Live load deflection design standard: L/360
- · Design clear spans, other than those shown in the above table, require additional structural review.

FIRE PROTECTION - CLEAR SPAN TABLE

MD2000[®] Fire Protection

5

....

Proven Concrete Floor System

ULC/CUL	Rating	Slab Thick	ness*	Ceiling	Beam Rating	
Design No.	(hr)	(in.)	(mm)		(hr)	
1522	2	3	75	Gypboard 1/2" (12.7 mm)	1 1/2	
1800	11/2-2	21/2-23/4-3-31/2	65 - 70 - 76 - 89	suspended or panel	1	
G003	2	2 3/4	70	suspended or panel	•	
G213	2 - 3	3-4	75 - 100	suspended or panel	3	
G227	2	2 3/4	70	suspended or panel	3	
G228	2	3 1/4	83	suspended or panel	2	
G229	2-3	3-4	75 - 100	suspended or panel	2-3	
G401	4	2 1/2	65	Plaster		
G524	2 - 3	2 3/4 - 3 1/2**	70 - 90	Gypboard 1/2" (12.7 mm)	2-3	
G525	3	3 1/4	83	Gypboard 5/8" (15.9 mm)	3	
G702	1-2-3	Varies**	Varies**	Direct spray on		
G802	1-2-3	Varies**	Varies**	Direct spray on	-	

Clob Thiskness

		MD20	00® Clear Span	Table				
		Resi	dential		Comm	iercial		
Slab Thickness	2 ³ /4" (70 mm)	3" (75 mm)	3 ^{1/4} " (83 mm)	3 1/2" (90 mm)	2 ³ /4" (70 mm)	3 1/4" (83 mm)		
Joist Depth	LL = 40 psf (1.9 kPa) DL = 68 psf (3.2 kPa)	LL = 40 psf (1.9 kPa) DL = 71 psf (3.4 kPa)	LL = 40 psf (1.9 kPa) DL = 74 psf (3.5 kPa)	LL = 40 psf (1.9 kPa) DL = 77 psf (3.7 kPa)	LL = 50 psf (2.4 kPa) DL = 68 psf (3.2 kPa)	LL = 50 psf (2.4 kPa) DL = 74 psf (3.5 kPa)		
8" (200 mm)	18' - 0" (5 485 mm)	18" - 0" (5 485 mm)	18" - 0" (5 485 mm)	18' - 0" (5 485 mm)	18" - 0" (5 485 mm)	18' - 0" (5 485 mm)		
10" (250 mm)	22' - 6" (6 860 mm)	22" - 6" (6 860 mm)	22' - 6" (6 860 mm)	22' - 6" (6 860 mm)	22" - 6" (6 860 mm)	22" - 6" (6 860 mm)		
12" (300 mm)	27' - 0" (8 230 mm)	27' - 0" (8 230 mm)	27' - 0" (8 230 mm)	27' - 0" (8 230 mm)	27" - 0" (8 230 mm)	27' - 0" (8 230 mm)		
14" (350 mm)	31' - 6" (9 600 mm)	31' - 6" (9 600 mm)	31'-6" (9 600 mm)	30' - 10" (9 400 mm)	31" - 6" (9 600 mm)	31' - 6" (9 600 mm)		
16" (400 mm)	35' - 11" (10 945 mm)	35' - 0" (10 670 mm)	34' - 1" (10 390 mm)	33' - 2" (10 110 mm)	35' - 11" (10 945 mm)	34' - 1" (10 390 mm)		
18" (450 mm)	38' - 7" (11 760 mm)	37' - 5" (11 405 mm)	36' - 5" (11 100 mm)	35' - 7* (10 845 mm)	38' - 7" (11 760 mm)	36' - 5" (11 100 mm)		
20" (500 mm)	41' - 0" (12 495 mm)	39' - 11" (12 165 mm)	38' - 10" (11 835 mm)	37' - 9" (10 505 mm)	41" - 0" (12 495 mm)	38' - 9" (11 810 mm)		
22" (550 mm)	43' - 0" (13 105 mm)	42' - 3" (12 880 mm)	41'-0" (12 495 mm)	39' - 11" (12 165 mm)	43" - 0" (13 105 mm)	41' - 0" (12 495 mm)		
24" (600 mm)	43' - 0" (13 105 mm)	43' - 0" (13 105 mm)	43'-0" (13 105 mm)	42' - 1" (12 825 mm)	43' - 0" (13 105 mm)	43' - 0" (13 105 mm)		

Notes:
• Table reflects uniform loads only. • Design clear spans, other than those shown in the above table, require additional structural review.

111

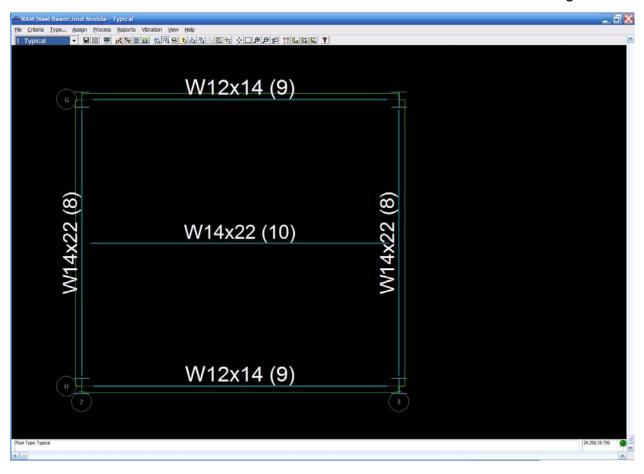
United States - Main Office 450 East Hillsboro Boulevard Deerfield Beach, Florida 33441 Telephone: (954) 571-3030 Toll Free: 1 800-546-9008 Fax: 1 800-592-4943

Canada - Main Office

270, chemin Du Tremblay Boucherville (Quebec) J4B 5X9 Telephone: (450) 641-4000 Toll Free: 1 866-506-4000 Fax: (450) 641-4001

Printed in Canada 02/2007

For local sales offices or distributors call: 1-800-546-9008

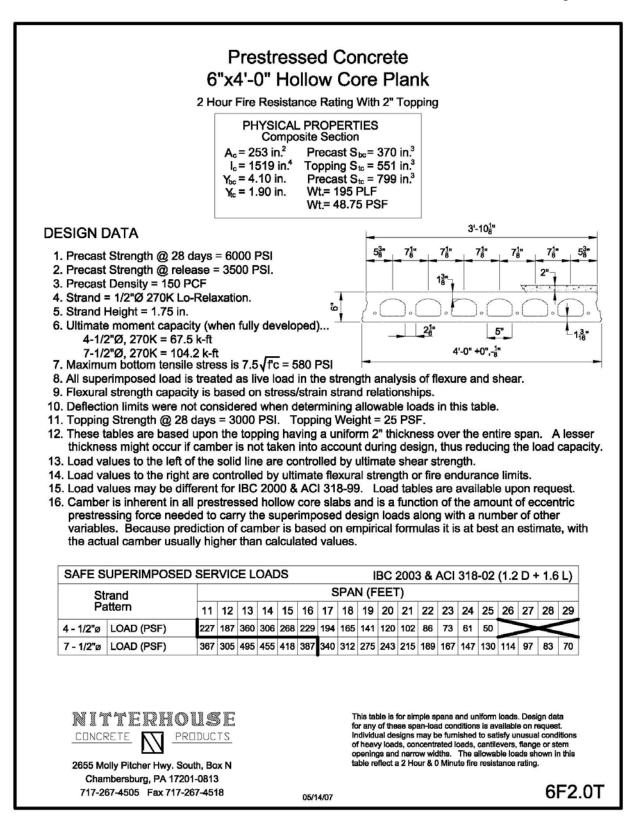

www.hambro.ws

Canam Group Inc., 1990-2007 © Canam Steel Corporation, 1990-2007

HAMBRO'

151 First Side Technical Assignment 2

			_							
60 Bars		anel	Q	c.f./s.f.	2.42 2.60 2.81 3.17 3.43 3.65 3.65 3.92	2.41 2.69 3.34 3.70 3.86 4.09	2.54 2.87 3.12 3.57 3.57 3.57 4.10 4.10	2.51 2.92 3.41 3.68 3.68 4.05 4.59	2.78 3.52 3.53 3.93 3.93 4.54 4.72	2.82 3.79 3.79 4.46 4.73 4.46
e 60		Steel (psf) Location of Panel	Ш	0.750 c.f.	2.39 2.57 2.57 3.14 3.14 3.43 3.61 3.87	2.39 2.70 3.30 3.65 3.86 4.05	2.52 2.85 3.13 3.52 3.52 4.06 4.06	2.49 2.37 3.54 3.54 3.54 4.24 4.51	2.76 3.17 3.48 3.86 4.46 4.46	2.82 3.29 4.09 4.41 4.85
Grade		Locs	-	0.7	2.37 2.55 3.11 3.42 3.82 3.82	2.38 2.70 3.27 3.61 3.86 4.01	2.50 2.82 3.13 3.78 3.78 4.01 4.17	2.48 2.88 3.61 3.61 4.49 4.43	2.74 3.17 3.45 3.45 4.18 4.18 4.61	2.82 3.78 3.78 4.05 4.37 4.79
_		Strip	Bottom		8-#5 8-#5 8-#5 8-#5 8-#5	$8^{+#5}$ $8^{-#5}$ $8^{-#5}$ $8^{-#5}$ $8^{-#5}$ $8^{-#5}$ $13^{-#}$ 4	13-#4 13-#4 13-#4 13-#4 13-#5 9-#5	13-#4 13-#4 13-#4 9-#5 10-#5 10-#5	9-# 5 9-# 5 13-# 4 116-# 4 16-# 4	14-#4 14-#4 10-#5 110-#5 11-#5 111-#5 12-#5
PANE	g Bars	Middle	Top		8-#5 8-#5 8-#5 8-#5 13-#4 13-#4	8 + 5 8 - 4 5 8 - 4 5 9 - 4 5 9 - 4 5 10 - 4 5 10 - 4 5	13-#4 13-#4 13-#4 10-#5 10-#4 16-#4	13-#4 13-#4 9-#5 10-#5 11-#5 112-#5	9-# 5 9-# 5 10-# 5 11-# 5 12-# 5 9-# 6	14-# 4 110-# 5 112-# 5 13-# 5 13-# 5 20-# 4
RIOR	Reinforcing Bars	Strip	Bottom	OF SLAB	8-# 5 8-# 5 8-# 5 10-# 5 10-# 6 8-# 6 12-# 5	8-#5 8-#5 14-#4 12-#5 19-#6 9-#6	13-# 4 9-# 5 16-# 4 12-# 5 9-# 6 10-# 6	13-#4 110-#5 112-#5 113-#6 222-#4 11-#6	10-# 5 117-# 4 113-# 5 110-# 6 111-# 6 116-# 5 16-# 5	$\begin{array}{c} 16^{-\#} 4 \\ 19^{-\#} 4 \\ 14^{-\#} 5 \\ 14^{-\#} 5 \\ 16^{-\#} 5 \\ 112^{-\#} 6 \\ 17^{-\#} 5 \\ 17^{-\#} 5 \\ \end{array}$
SQUARE INTERIOR PANEL		Column Strip	Top		14-#5 17-#5 20-#5 12-#7 11-#8 11-#8 12-#8	16-# 5 11-# 7 11-# 7 11-# 8 113-# 8 13-# 8	13-# 6 112-# 7 112-# 8 112-# 8 114-# 8 114-# 8	20-# 5 13-# 7 12-# 8 113-# 8 115-# 8 15-# 8	12-# 7 112-# 8 113-# 8 114-# 8 116-# 8 116-# 8	14-# 7 15-# 8 15-# 8 17-# 8 17-# 8 18-# 8
UARE	(1)	Min. Sq.	Col. (in.)	THICKNESS	11 15 19 23 33 28 23 33 40	12 26 31 33 39 47	14 29 37 54 54	26 27 28 28 28 28 28 28 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	18 23 59 59 59 59 59 59 59 59 59 59 59 59 59	19 26 33 56 67
SQ	(3)		(psf	TOTAL	50 300 350 350 350 350 350 350 350 350 3	50 350 350 350 350 350 350 350 350 350 3	50 350 350 350 350 350 350 350 350 350 3	50 250 350 350 350 350	50 250 350 350 350	50 300 350 350 350 350 350 350 350 350 3
	(2)	Span	cc. (ft)	9 in. =	88888888	24 24 24 24 24 24 24	25 25 25 25 25 25 25 25 25 25 25 25 25 2	26 26 26 26 26 26 26 26 26 26 26 26 26 2	27 27 27 27 27 27 27 27 27 27 27 27 27 2	28 28 28 28 28 28 28 28 28 28
		Sf) Danal	C	c.f./s.f.	2.23 2.50 3.284 3.258 3.284 3.284 3.284 3.286 3.286 3.286 3.286	2.27 2.64 3.12 3.49 4.19 4.45	2.44 2.88 3.32 4.08 4.08 4.85	2.53 3.02 3.57 3.57 3.57 3.58 4.67 5.05	2.71 3.26 3.79 4.35 4.95 5.27	2.77 3.47 4.56 5.33 5.60
	End Panel	Steel (psf)	EC	0.750 c.	2.34 2.54 3.16 3.49 3.49 4.13	2.35 2.64 3.01 3.41 3.74 4.31	2.47 2.88 3.21 3.71 4.19 4.62	2.56 3.54 3.54 4.23 4.23 4.23	2.75 3.21 3.66 4.19 4.78 5.08	2.79 3.36 3.92 4.68 5.07 5.30
ANEL		S	E		2.31 2.52 2.78 3.12 3.47 3.79 4.04	2.33 2.62 3.37 3.37 4.29 4.29	2.45 2.86 3.19 3.66 4.17 4.17	2.53 2.53 3.51 3.51 4.17 4.46 4.75	2.72 3.18 3.60 4.12 4.71 5.02	2.78 3.33 3.92 5.00 5.22
EDGE PANEI		Strip	Top Int.		$\begin{array}{c} 8^{+\#}5\\ 8^{-\#}5\\ 8^{-\#}5\\ 8^{-\#}5\\ 8^{-\#}5\\ 13^{-\#}4\\ 14^{-\#}4\\ 10^{-\#}5\end{array}$	$\begin{array}{c} 8^{+\#} 5\\ 8^{-\#} 5\\ 8^{-\#} 5\\ 8^{-\#} 5\\ 10^{-\#} 5\\ 10^{-\#} 5\\ 16^{-\#} 4\end{array}$	$\begin{array}{c} 13-\#4\\ 13-\#4\\ 13-\#4\\ 10-\#5\\ 16-\#4\\ 111-\#5\\ 12-\#5\\ 12-\#5\end{array}$	$\begin{array}{c} 13-\#\ 4\\ 13-\#\ 4\\ 10-\#\ 5\\ 110-\#\ 5\\ 112-\#\ 5\\ 9-\#\ 6\\ 9-\#\ 6\end{array}$	$\begin{array}{c} 9 + 5 \\ 9 - \# 5 \\ 116 - \# 4 \\ 112 - \# 5 \\ 9 - \# 6 \\ 113 - \# 5 \\ 110 - \# 6 \\ 110 - \# 6 \end{array}$	14-# 4 110-# 5 112-# 5 113-# 5 110-# 6 110-# 6 111-# 6
RE EI	52	Each Middle Strip	Bottom		$\begin{array}{c} 8^{+\#}5\\ 8^{-\#}5\\ 8^{-\#}5\\ 8^{-\#}5\\ 10^{-\#}4\\ 8^{-\#}6\\ 8^{-\#}6\\ 12^{-\#}5\end{array}$	$\begin{array}{c} 8^{+\#}5\\ 8^{-\#}5\\ 9^{-\#}5\\ 9^{-\#}5\\ 8^{-\#}6\\ 9^{-\#}6\\ 9^{-\#}6\end{array}$	$\begin{array}{c} 13\#4\\ 9\#5\\ 9\#5\\ 112\#5\\ 112\#5\\ 113\#5\\ 113\#5\\ 10\#6\end{array}$	$\begin{array}{c} 13-\#\ 4\\ 13-\#\ 5\\ 9-\#\ 6\\ 9-\#\ 6\\ 110-\#\ 6\\ 110-\#\ 6\\ 11-\#\ 6\end{array}$	9-#5 9-#5 119-#4 110-#6 111-#6 9-#7	10-#5 112-#5 110-#6 110-#6 112-#6 112-#7
SQUARE	Reinforcing Bars		Top Int.		11-# 6 13-# 6 15-# 6 13-# 7 11-# 8 12-# 8 13-# 8	12-# 6 11-# 7 13-# 7 12-# 8 13-# 8 17-# 7 14-# 8	14-# 6 13-# 7 19-# 6 13-# 8 14-# 8 15-# 8 16-# 8	15-# 6 14-# 7 13-# 8 13-# 8 15-# 8 16-# 8 17-# 8	$\begin{array}{c} 13.4 \\ 12.4 \\ 14.4 \\ 16.4 \\ 117.4 \\ 18.4 \\ 18.4 \\ 18.4 \\ 18.4 \\ 8 \end{array}$	14-# 7 13-# 8 15-# 8 17-# 8 18-# 8 19-# 8 20-# 8
	Reinfe	Each Column Strip	Bottom		$\begin{array}{c} 9.\pm5\\ 9.\pm6\\ 9.\pm6\\ 10.\pm6\\ 11.\pm6\\ 8.\pm7\\ 8.\pm8\end{array}$	10-#5 112-#5 116-#5 8-#8 8-#8 8-#8	11-# 5 110-# 6 110-# 7 10-# 7 9-# 8	9-# 6 9-# 6 110-# 7 11-# 7 9-# 8 10-# 8	10-# 6 9-# 7 9-# 8 9-# 8 112-# 7 110-# 8 111-# 8	23-#4 110-#7 115-#6 115-#8 113-#7 111-#8 111-#8
		Col	Top Ext. +		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 13^{-\#} 4 & 5 \\ 15^{-\#} 4 & 7 \\ 12^{-\#} 5 & 5 \\ 13^{-\#} 5 & 4 \\ 22^{-\#} 4 & 4 \\ 23^{-\#} 4 & 4 \\ 16^{-\#} 5 & 2 \\ \end{array}$	14-#47 17-#48 13-#54 16-#52 25-#43 25-#43 13-#61	16-# 4 6 19-# 4 6 22-# 4 7 16-# 5 5 17-# 5 4 13-# 6 19-# 5 1	$\begin{array}{c} 12^{-\#} 5 \ 5 \\ 16^{-\#} 5 \ 5 \\ 13^{-\#} 6 \ 3 \\ 19^{-\#} 5 \ 3 \\ 14^{-\#} 6 \ 1 \\ 15^{-\#} 6 \ 0 \\ \end{array}$	$19-\# 4 \ 10$ $15-\# 5 \ 6$ $13-\# 6 \ 4$ $19-\# 5 \ 3$ $20-\# 5 \ 3$ $16-\# 6 \ 2$ $16-\# 6 \ 0$
	nents	-M 1st. int.	(ft-kip)		200 240 315 376 395	226 271 352 352 388 414 433	252 303 349 472 472	281 337 3337 464 490 509	313 375 432 506 533 553	347 1 414 472 513 513 554 554 595
	Panel Moments	+M Int.	(ft-kip)		148 179 207 257 257 234 257 234 257	168 201 282 288 307 322	188 225 260 292 336 334 351	209 251 322 345 378 378	232 279 321 351 376 410	258 308 351 407 442 442
DS)	Total P	Ext.	-	SLAB	74 89 117 117 129 140	84 101 131 154 154 161	94 113 130 146 158 167 175	105 125 145 161 172 182 189	116 139 176 188 198 205	129 154 191 203 213 221
RHEA		quare	λ	ESS OF	0.767 0.748 0.677 0.677 0.677 0.677 0.670 0.641 0.626 0.610	0.736 0.724 0.713 0.652 0.611 0.610 0.609	0.733 0.724 0.651 0.633 0.610 0.609 0.609	0.705 0.658 0.655 0.636 0.609 0.609 0.609	0.717 0.693 0.654 0.654 0.608 0.608 0.607 0.606	0.709 0.662 0.662 0.608 0.608 0.608 0.608
SHEA	11	Min. Square Column	(in.)	THICKN	16 27 31 34 34 40	18 22 33 34 35 45	20 22 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	22 27 31 51 58 58	24 29 41 56 64 64	26 31 54 52 70 70
(WITHOUT SHEARHEADS)	Factored	bosed	(Jsd)	TOTAL THICKNESS OF SL	3332222222	33052505252 33052505252	300 320 320 320 320 320 320 320 320 320	350 350 350 350 350 350 350 350 350 350	350 350 350 350 350 350 350 350 350 350	330 320 320 320 320 320 320 320 320 320
	2	Cols. $\ell_1 = \ell_2$	(U)	9 in. =	******	24 24 24 24 24 24	25 25 25 25 25 25 25 25 25	26 26 26 26 26 26 26	27 27 27 27 27 27 27	28 28 28 28 28 28 28 28 28 28 28 28 28 2


9-26

CONCRETE REINFORCING STEEL INSTITUTE

B101	0 Floor C	Construction							18
	<			9	i i	concrete Reinforcem Forms, fou Finish, stee Curing, spi	-way slab w s. Primary d mns. Pricing Ass to to 4 KSI, p pump. hent, fy = 60 r use.	ithout drops esign limit is umptions: blaced by KSI. brane.	oth
C	C							COST PER S.F.	
1	n Components				QUANTITY	UNIT	MAT.	INST.	TOTAL
1	Forms in Edge fo Reinforc Concret Place ar	LOAD, 12" MIN. COL. n place, flat plate to 15' high, rms to 6" high on elevated slat ing in place, elevated slatbs #4 e ready mix, regular weight, 3 nd vibrate concrete, elevated s por, monolithic steel trowel fini	b, 4 uses 4 to #7 000 psi ilab less than 6", pump		.992 .065 1.706 .459 .459 1.000	S.F. L.F. Lb. C.F. S.F.	1.56 .01 .87 1.95	4.73 .22 .63 .60 .76	6.29 .2 1.5(1.9 .6(.7)
	Cure wit	th sprayed membrane curing c			.010	C.S.F.	.05	.08	
	Cure wit	th sprayed membrane curing c		TOTAL	.010	22.55	.05 4.44		.1
B101	Cure wit	th sprayed membrane curing c	compound	total		C.S.F.		.08 7.02	.1 11.4
8101	10 223 BAY SIZE	SUPERIMPOSED	Cast MINIMUM	in Place	e Flat P	C.S.F.	4,44	.08 7.02 COST PER S.F	.1 11.4
	BAY SIZE (FT.)	SUPERIMPOSED LOAD (P.S.F.)	Cast MINIMUM COL. SIZE (IN.)	sLAB THICKNESS	e Flat P	C.S.F. Plate TOTAL OAD (P.S.F.)	4.44	.08 7.02 COST PER S.F INST.	.1 11.4 : : TOTAL
000	10 223 BAY SIZE	SUPERIMPOSED	Cast MINIMUM	in Place	e Flat P	C.S.F.	4,44	.08 7.02 COST PER S.F INST. 4 7.05	.1 11.4
000	BAY SIZE (FT.)	SUPERIMPOSED LOAD (P.S.F.) 40 75 125	MINIMUM COL. SIZE (IN.) 12 14 20	5-1/2 5-1/2 5-1/2 5-1/2	e Flat P	C.S.F. C.S.F. TOTAL OAD (P.S.F.) 109 144 194	4.44 MAT. 4.4 4.4 4.6	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10	.1 11.4 TOTAL 11.4 11.5 11.7
000 200 400 600	BAY SIZE (FT.) 15 x 15	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 125 175	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22	51/2 51/2 51/2 51/2 51/2 51/2 51/2	e Flat P	C.S.F. C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244	4.44 MAT. 4.4 4.4 4.6 4.7	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15	.1 11.4 TOTAL 11.4 11.5 11.7 11.7
000 200 400 600 000	BAY SIZE (FT.)	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14	51/2 51/2 51/2 51/2 51/2 51/2 51/2 7	e Flat P	C.S.F. C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127	4.44 MAT. 4.4 4.6 4.7 5.1	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10	.1 11.4 TOTAL 11.4 11.5 11.7 11.8 11.7 11.8
000 200 400 600 000 400	BAY SIZE (FT.) 15 x 15	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16	51/2 51/2 51/2 51/2 51/2 51/2 51/2 7 7 7-1/2	e Flat P	C.S.F. C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127 169	4.44 MAT. 4.4 4.4 4.6 4.7	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10 5 7.25	.1 11.4 TOTAL 11.4 11.5 11.7 11.7
000 200 400 600 000 400 600	BAY SIZE (FT.) 15 x 15	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14	51/2 51/2 51/2 51/2 51/2 51/2 51/2 7	e Flat P	C.S.F. C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127	4.44 MAT. 4.4 4.6 4.7 5.1 5.4	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10 5 7.25	.1. 11.4 TOTAL 11.4 11.5 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.4 11.4
B101 000 200 400 600 800 200	BAY SIZE (FT.) 15 x 15	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 125	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 22	51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2	e Flat P	C.S.F. Plate TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127	4.44 MAT. 4.4 4.6 4.7 5.1 5.4 5.9 6 5.1	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10 5 7.25 5 7.45 5 7.45 7.45 0 7.10	.1. 11.4 TOTAL 11.4 11.5 11.7 11.8 12.7 12.7 12.7 13.4 13.4 13.4 12.2
000 200 400 600 000 400 600 800 200 400	BAY SIZE (FT.) 15 x 15	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 175 125 175 40 75	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 22 24 16 20	51/2 51/2 51/2 51/2 51/2 51/2 7 71/2 81/2 81/2 81/2 7 71/2	e Flat P	C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127 175	4.44 MAT. 4.4 4.6 4.7 5.1 5.4 5.9 6 5.1 5.5	.08 7.02 COST PER S.F INST. 4 7.05 6 7.05 3 7.10 2 7.15 0 7.10 5 7.25 5 7.45 5 7.45 7.45 0 7.10 0 7.10	.1.1.4 11.4 11.4 11.5 11.7 11.7 11.7 11.7 11.7 12.7 12.7 12.7
000 200 400 600 000 400 600 800 200 400 600	BAY SIZE (FT.) 15 x 15	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 175 125 175 40 75 125 125	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 22 24 16 20 24	51/2 51/2 51/2 51/2 51/2 51/2 7 71/2 81/2 81/2 7 7-1/2 81/2 81/2 81/2	e Flat P	C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127 175 231	4.44 MAT. 4.4 4.4 4.6 4.7 5.1 5.4 5.9 6 5.1 5.5 6	.08 7.02 COST PER S.F INST. 4 7.05 6 7.05 3 7.10 2 7.15 0 7.10 5 7.25 5 7.45 7.45 7.45 0 7.10 0 7.20 7.45	.1. 11.4 11.4 11.5 11.7 11.7 11.7 11.7 12.7 12.7 12.7 13.4 13.4 12.2 12.7 12.7 13.4
000 200 400 600 000 400 600 200 400 600 600 600 000	10 223 BAY SIZE (FT.) 15 x 15 15 x 20 20 x 20	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 22 24 16 20 24 24 24	51/2 51/2 51/2 51/2 51/2 51/2 51/2 7 71/2 81/2 81/2 81/2 81/2 81/2 81/2	e Flat P	C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127 175 231 281	4.44 MAT. 4.4 4.4 4.6 4.7 5.1 5.4 5.9 6 5.1 5.5 5.6 6.0	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10 5 7.25 5 7.45 5 7.45 5 7.45 7.40 5 7.40 5 7.45	.1. 11.4 11.4 11.5 11.7 11.7 11.7 11.7 11.7 12.7 12.7 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4
000 200 400 600 000 400 600 200 400 600 000 500 500	BAY SIZE (FT.) 15 x 15	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 22 24 16 20 24 24 24 18	SLAB THICKNESS 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 7 71/2 81/2 7 71/2 81/2 81/2 81/2 81/2 81/2	e Flat P	C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127 175 231 281 146	4.44 MAT. 4.4 4.4 4.6 4.7 5.1 5.4 5.9 6 5.1 5.5 5.6 6.0 5.9	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45	.1. 11.4 11.4 11.5 11.7 11.7 11.7 11.7 12.7 12.7 13.4 13.4 13.4 13.4 13.4 13.4
000 200 400 600 000 600 800 200 400 500 500 500 500 500	10 223 BAY SIZE (FT.) 15 x 15 15 x 20 20 x 20	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 175 40 75 125 175 125 175 40 75 125 175 40 75	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 20 22 24 16 20 24 24 24 24 18 20	SLAB THICKNESS 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 7 71/2 81/2 7 71/2 81/2 81/2 81/2 81/2 81/2 81/2 81/2 81/2 9	e Flat P	C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127 175 231 281	4.44 MAT. 4.4 4.4 4.6 4.7 5.1 5.4 5.9 6 5.1 5.5 5.6 6.0	.08 7.02 COST PER S.F INST. 4 7.05 6 7.05 3 7.10 2 7.15 0 7.10 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45 5 7.55	.1.1.4 11.4 11.1 11.1 11.1 11.1 11.1 11
000 200 200 200 200 200 200 200 200 200	10 223 BAY SIZE (FT.) 15 x 15 15 x 20 20 x 20	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 22 24 16 20 24 24 24 18	SLAB THICKNESS 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 51/2 7 71/2 81/2 7 71/2 81/2 81/2 81/2 81/2 81/2	e Flat P	C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127 175 231 281 146 188	4.44 MAT. 4.4 4.4 4.6 4.7 5.1 5.4 5.9 6 5.1 5.5 5.6 6.0 5.9 6.1	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10 5 7.25 5 7.45 7.45 0 7.10 0 7.10 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45 5 7.55 5 7.55	11.4 TOTAL 11.4 11.1 11.1 11.1 11.1 11.1 11.1 11.
000 200 400 600 000 400 600 800 200	10 223 BAY SIZE (FT.) 15 x 15 15 x 20 20 x 20	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 20 22 24 16 20 24 24 24 24 18 20 26	Fin Place SLAB THICKNESS 5-1/2 5-1/2 5-1/2 5-1/2 5-1/2 5-1/2 5-1/2 5-1/2 5-1/2 5-1/2 5-1/2 7 7-1/2 8-1/2 8-1/2 8-1/2 9 9-1/2 10 9	e Flat P	C.S.F. C.S.F. TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127 175 231 281 146 148 244 300 152	4.44 MAT. 4.4 4.4 4.6 4.7 5.1 5.5 6 5.1 5.5 6 6 0 5.9 6 6.0 5.9 6.1 6.6 6.9 6.1 6.1	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10 5 7.25 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45 5 7.55 5 7.55 5 7.55 5 7.55	11.4 TOTAL 11.4 11.1 11.1 11.1 11.1 11.1 11.1 11.
000 200 400 600 600 800 200 800 200 600 600 600 600 000 600 600 600	10 223 BAY SIZE (FT.) 15 x 15 15 x 20 20 x 20 20 x 25	SUPERIMPOSED LOAD (P.S.F.) 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 40 75 125 175 175	Cast MINIMUM COL. SIZE (IN.) 12 14 20 22 14 16 20 24 16 20 24 24 16 20 24 24 18 20 26 30	Fin Place SLAB THICKNESS 5-1/2 5-1/2 5-1/2 5-1/2 7 7-1/2 8-1/2 8-1/2 8-1/2 8-1/2 8-1/2 9 9-1/2 10	e Flat P	C.S.F. Plate TOTAL OAD (P.S.F.) 109 144 194 244 127 169 231 281 127 175 231 281 146 188 244 300	4.44 MAT. 4.4 4.4 4.6 4.7 5.1 5.5 6 5.1 5.5 6 6 0 5.9 6 5.1 5.5 6 6.0 5.9 6.1 6.6 6.9	.08 7.02 COST PER S.F INST. 4 7.05 5 7.05 3 7.10 2 7.15 0 7.10 5 7.25 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45 5 7.45 5 7.55 5 7.55 7.55	11. TOTAL 11. 11. 11. 11. 12. 12. 13. 13. 13. 13. 13. 13. 14. 14.

Ī

			Snan	Columns	$\ell_1 = \ell_2$ (ft)	Total Depth = 121/2 in.	18'- 0* D= 6.500 RIB 0N COLUMN LINE 0.648 CF/SF	21'- 0* D= 9.500 RIB NOT ON COLUMN LINE 0.680 CF/SF	24'- 0* D= 9.500 RIB NOT ON COLUMN LINE 0.661 CF/SF	27" - 0" D= 9.500 RIB NOT ON COLUMN LINE 0.648 CF/SF	30'- 0" D=12:500 RIB ON COLUMN LINE 0.670 CF/SF	33"- 0" D=12.500 RIB 00 COLUMN LINE 0.658 CF/SF										
			Enstand	Super-	Load (psf)		56633255658 5663355658	100 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	30022020 30022020	50 150 200	855										
				(1)	Steel (psf)	Rib Depth = 8 in.	1.86 1.86 1.92 1.98 2.61 3.02 3.02	1.84 1.84 2.23 2.23 3.30 3.81	1.92 1.98 2.32 2.64 3.44 4.19	2.06 2.22 3.265 3.265 4.10	2.12 2.53 3.19 3.88	2.45 2.39 3.71										
MA		Square		Squa		Squa		Squá		Squa		Squar			$\begin{array}{c} c_1 = c_2 \\ (in.) \end{array}$	= 8 in.	22222222	22222222	12 12 18	13 * 13 * 20 *	15 * 17 * 20 *	16 * 23 *
LL			are Edge		Å	10	0.688 0.737 0.737 0.737 0.737 0.737 0.737 0.737 0.688 0.858 0.858	0.759 0.787 0.816 0.844 0.844 0.623	0.823 0.864 0.885 0.885 0.885 0.885 0.885 0.885 0.630	0.847 0.889 0.931 0.629 0.624	0.861 0.917 0.933 0.624	0.937 0.637 0.622										
FLEF	SQ		Column		Edge Column		Stirrups	Total Slab [3 S													
FLAT	QUARE		-			Slab Depth =	14 17 17 17 17 17 17 17 17 17 17 17 17 17	****	1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		8888	1777										
SLA					Loge No size +	= 4½ in.	13-#5+0 13-#5+0 13-#5+0 13-#5+0 13-#5+0 13-#5+0 13-#5+0 13-#5+0	15-#5+0 15-#5+0 15-#5+0 15-#5+0 15-#5+1 15-#5+1 15-#5+1	18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0	20-#5+ 0 20-#5+ 1 20-#5+ 3 20-#5+ 0 20-#5+ 1	22-#5+ 1 22-#5+ 5 22-#5+ 4 22-#5+ 4	25-#5+ 4 25-#5+ 8 25-#5+ 2 25-#5+ 2										
m l	EDGE F		Colu		No. Ribs		~~~~~~~~	444444	444444	44444	ດາດາດ	20 20 20										
SYSTEM	PANELS	Reinforcing	Column Strip	Bottom	Bars per Rib		2-#4 2-#4 1-#4 and 1-#5 2-#6 2-#6 1-#7 and 1-#7	2-#4 2-#4 2-#5 1-#5 and 1-#6 1-#7 and 1-#7 1-#7 and 1-#8	1-#4 and 1-#5 2-#5 2-#6 2-#7 2-#9 2-#9	1-#5 and 1-#6 2-#6 2-#8 2-#9	1-#5 and 1-#6 1-#6 and 1-#7 1-#7 and 1-#8 1-#9	1-#6 and 1-#7 1-#7 and 1-#8 1-#8 and 1-#9										
1 30		ng Bars-		Top	No size		13-#5 13-#5 13-#5 13-#5 13-#5 13-#5	15-#5 15-#5 15-#5 16-#5 14-#6 23-#5 23-#5	18-#5 18-#5 18-#5 18-#5 17-#6 17-#6	20-#5 20-#5 23-#5 19-#6 18-#7	22-#5 25-#5 22-#6 20-#7	26-#5 24-#6 22-#7										
× "0		Bars-Each Direction			No. Ribs		~~~~~~~~~		***	ດດດດ	ດດດາດ	000										
(30		Directi	Middle	Middle	Bottom	Bars Bars	Long Bars		#4 #4 #5 #5	#4 #5 #7 #7	#4 #5 #7	#4 #5 #6	#4 #6 #6	5 年 年								
2		UC	Midcle Strip					## ## ## ## ## ## ## ## ## ## ## ## ##	5## 5## 5## 7## 2## 2## 2## 2## 2## 2##	#4 #75 #17	##5 ##5 ##7	5年 5年 5年	994 100 100 100 100 100 100 100 100 100 10									
Voids:				Top				6-#5 6-#5 6-#5 6-#5 7-#5 7-#5 7-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8	7-#5 7-#5 7-#5 7-#5 7-#5 7-#5 7-#5	9 9 9 9 9 9 9 9 9 9 9 9 9 9	9-#5 9-#5 10-#5 12-#5	10-#5 11-#5 10-#6										
: 6			~	N-	Edge (ft-k)		30 39 55 72 89 89 106	50 63 77 118 118 170	74 95 1116 176 212 212	105 135 164 192 244	146 186 225 263	193 246 295										
Ribs			Moments	W+	Bot. (ft-k)		60 107 134 187 239 289 289	99 177 306 389 389 460	149 193 264 330 545 545	211 270 368 458 590	292 372 484 604	386 608 608										
s @			50	N-	Int. (ft-k)		81 104 157 150 195 286 286	134 171 207 318 391 391 457	200 256 311 367 474 569	284 363 442 518 658	393 501 708 708	520 663 794										
0 36				3	Steel (psf)	Total	1.84 1.84 1.84 1.84 2.05 2.28 2.23 2.53	1.82 1.82 1.82 2.01 2.35 3.29 3.29	1.86 2.05 2.97 3.64	1.94 2.02 2.38 2.38 3.74	1.94 2.28 3.50	2.16 3.36 3.36										
		S Interic			$\begin{array}{c} c_{1} \equiv c_{2} \\ (in.) \end{array}$	Depth	22222222	1255 1255 1255 1255	55222 5 * * *	13 13 16	15 15 * 15 *	6										
	SQUAR	Cultare	Interior Column	101	Stirrups	= 12½ in.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 S 4 1 3 S 4 1 3 S 4 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 S 4 1 3 S 4 1 3 S 4 2 3 S 4 2 3 S 4 2	3 S 4 1 3 S 4 1 3 S 4 1	3333 341 41 41 41 41 41 41 41 41 41 41 41 41 4										
	ARE				No. Ribs	Rib		444444	444444	44444	ດາດາດາດ	ດດດ										
	INTERIOR	Reinforcing	Column Strip	Bottom	Bars per Rib	Depth = 8 in.	2-#4 2-#4 2-#4 2-#5 1-#5 and 1-#6 1-#5 2-#6	2-#4 2-#4 2-#4 1-#5 and 1-#5 1-#5 and 1-#6 2-#6 1-#6 and 1-#7	2-#4 2-#4 2-#5 1-#5 and 1-#5 1-#6 and 1-#7 2-#7	1-#4 and 1-#5 2-#5 2-#6 1-#7 and 1-#7 1-#7 and 1-#8	1-#4 and 1-#5 1-#5 and 1-#6 2-#7 2-#7	1-#5 and 1-#6 2-#6 2-#7										
		Bars-		Top	No size	4	13-#5 13-#5 13-#5 13-#5 13-#5 13-#5 13-#5	15-#5 15-#5 15-#5 15-#5 15-#6 15-#6	18-#5 18-#5 18-#5 16-#6 20-#6	20-#5 20-#5 21-#5 25-#5 23-#6 23-#6	22-#5 23-#5 21-#6 25-#6	25-#5 23-#6 28-#6										
Grade (PANEL	-Each Direction			No. Ribs	Total Slab	~~~~~~	~~~~~~	44444	ດດດດດ	ດດດດ	0 0 0										
0.0	s	Directio	Middle	Bottom	Long S Bars E	Depth = 41/2	#4 #4 #5	#4 #5 #5 #5 #6	#4 #4 #5 #6	#4 #5 #5	#4 #5 #5	9# ##										
Bars		_	Strip	Top	Short No Bars size	= 4½ in.	#4 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5	#4 #5 #5 #5 8 #5 8 8 8 8 8 8 8 8 8 8 8 8 8	#4 #5 #6 #6	#455#455	#55#	#4 10-#5 #5 13-#5 13-#5										

W8x10	and the	W8x10	
C4x5.4		C4x5.4	
C4x5.4		C4x5.4	
C4x5.4	W14x22	C4x5.4	W12x16
C4x5.4	-W1-	C4x5.4	MIS
C4x5.4		C4x5.4	
W8x10		W8x10	
C4x5.4		C4x5.4	
C4x5.4		C4x5.4	
C4x5.4	W14x22	C4x5.4	W12x16
C4x5.4		C4x5.4	MI MI
C4x5.4		C4x5.4	
W8x10		W8x10	